Influence of Hydroxypropyl Methylcellulose Molecular Weight Grade on Water Uptake, Erosion and Drug Release Properties of Diclofenac Sodium Matrix Tablets
نویسندگان
چکیده
Purpose: To comparatively evaluate the effect of two hydroxylpropyl methylcellulose (HPMC) molecular weight grades (K4M and K15M) on drug release from diclofenac sodium matrix tablets. Methods: Tablets containing diclofenac sodium were prepared by direct compression method at various drug/HPMC ratios and evaluated in vitro for their water uptake, erosion and dissolution characteristics over a period of 8 h. Their release data were analyzed according to various release kinetic models. Results: The release rate of diclofenac decreased with increase in polymer content and was dependent on the HPMC type used, with the lower release rate observed in formulations containing the higher molecular weight grade HPMC K15M. Formulations containing the higher molecular weight HPMC (F4, F5 and F6) showed higher water uptake than those containing the lower molecular weight polymer (F1, F2 and F3) (p < 0. 001). The formulations incorporating the lower molecular weight HPMC K4M (F1, F2 and F3) showed higher erosion than those that contained HPMC K15M (F4, F5 and F6) (p < 0.001). Kinetic data based on the release exponent, n, in Peppas model, showed that n values were between 0.14 and 0.55, indicating that drug release from HPMC matrices was predominantly by diffusion. Conclusion: This study demonstrates that the molecular weight (MW) of HPMC does affect the water uptake and erosion as well as the rate of drug release from of HPMC matrices.
منابع مشابه
Floating Matrix Tablets of Domperidone Formulation and Optimization Using Simplex Lattice Design
The purpose of this research was to prepare a floating matrix tablet containing domperidone as a model drug. Polyethylene oxide (PEO) and hydroxypropyl methylcellulose (HPMC) were evaluated for matrix-forming properties. A simplex lattice design was applied to systemically optimize the drug release profile. The amounts of PEO WSR 303, HPMC K15M and sodium bicarbonate were selected as independen...
متن کاملEffect of Formulation Variables on Phenobarbital Release from HPMC Matrices
Controlled release swellable tablets of phenobarbital were prepared by a simple direct compression process using hydroxypropyl methylcellulose (HPMC) as the matrix former. The effects of the viscosity grades of HPMC and HPMC/lactose ratio and ethylcellulose (EC)/sodium carboxymethylcellulose (NaCMC) and their concentrations on the release behavior of phenobarbital from HPMC matrices wer...
متن کاملFloating Matrix Tablets of Domperidone Formulation and Optimization Using Simplex Lattice Design
The purpose of this research was to prepare a floating matrix tablet containing domperidone as a model drug. Polyethylene oxide (PEO) and hydroxypropyl methylcellulose (HPMC) were evaluated for matrix-forming properties. A simplex lattice design was applied to systemically optimize the drug release profile. The amounts of PEO WSR 303, HPMC K15M and sodium bicarbonate were selected as independen...
متن کاملIn Vitro Studies of Controlled Release Alfuzosin Matrix Tablets Prepared with Ethylcellulose and Hydroxypropyl Methylcellulose
Extended release formulation of alfuzosin, an a-antagonist used for prostatic hypertrophy, is available in market. It is convenient for older patients to take only one tablet a day. Marketed alfuzosin formulation is three layered geomatrix tablet that requires special facilities, high cost, more time and complex operation than normal direct compression formulation. Therefore, a less compl...
متن کاملTranslocation of drug particles in HPMC matrix gel layer: effect of drug solubility and influence on release rate.
The aim of this work was to study the release mechanisms of drugs having different solubility (buflomedil pyridoxalphosphate 65%, sodium diclofenac 3.1%, nitrofutantoin 0.02% w/v,) from hydroxypropyl methylcellulose (HPMC) matrices by concomitantly studying swelling, diffusion and erosion fronts movement and drug delivery. The main goal was to clarify the role played by polymer swelling in drug...
متن کامل